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Abstract. Explicit exact formulas are presented, up to fourth order in a strict chiral covariant derivative
expansion, for the normal parity component of the Euclidean effective action of even-dimensional Dirac
fermions. The bosonic background fields considered are scalar, pseudo-scalar, vector and axial vector. No
assumptions are made on the internal symmetry group and, in particular, the scalar and pseudo-scalar
fields need not be on the chiral circle.

1 Introduction

The effective action plays an important role in quantum
field theory, both from the phenomenological and from
the formal point of view, since it compactly embodies the
renormalized properties of the system; Green’s functions,
S-matrix elements and the expectation values of observ-
ables can be extracted from it. In addition it is suitable
to study non-perturbative issues. Consequently the effec-
tive action functional has been the subject of a very large
amount of work from different points of view, which in-
clude its proper definition and renormalization, its sym-
metries and their anomalous breaking, its properties in
curved space-times or finite temperature, and its calcu-
lation. An excellent and quite complete review for chiral
fermions in flat space-time and zero temperature, the case
of interest to us, can be found in [1]. For anomalies in
curved space-times see e.g. [2]. Work on chiral fermions at
finite temperature can be found in [3,4].
In the present work and its companion paper [5] we

concentrate on the computational issues. Concretely we
deal with the calculation of the effective action of Dirac
fermions in the presence of bosonic external fields; thus,
the functional adds one-loop Feynman diagrams with
fermions running on the loop and bosonic external legs.
We restrict ourselves to the case of even dimensions (since
there are some technical differences with the odd-dimen-
sional case), zero temperature and flat space-time. The
class of external bosonic fields to be included is that of
scalar, pseudo-scalar, vector and axial vector fields. Cou-
pling to higher tensor fields is not included; nevertheless,
the class considered here is quite large since no assump-
tion will be made on the internal symmetry group; that
is, the external fields are arbitrary matrices free from al-
gebraic assumptions regarding their dimension, commuta-
tivity, chiral circle constraint or any other constraints.
The computation of the effective action functional in

closed form is not possible in general, and thus several

asymptotic expansions have been devised. In the heat ker-
nel expansion the terms are classified by its scale dimen-
sion; that is, each term has a well-defined number of ex-
ternal fields and derivative operators. It is the computa-
tionally simplest expansion and so it has been carried out
to considerably large orders even for curved space-times
[6]. Other expansions can be regarded as resummations of
this one. In the perturbative expansion, the contributions
are classified by the number of external legs, that is, the
number of external fields in the term, and all orders in
their momenta are added. This is a weak field approxima-
tion which however captures the non-locality of the exact
functional. On the other hand, in the covariant derivative
expansion, to be considered in this work, the contributions
are classified by the number of chiral covariant derivatives,
or equivalently, by the number of Lorentz indices. Both
definitions are equivalent in the absence of external tensor
fields. This counting is appropriate for external fields with
a smooth space-time dependence and weak gauge fields.
The scalar and pseudo-scalar fields need not be weak, and
this allows one to study non-perturbative issues such as
spontaneous symmetry breaking. Two important proper-
ties of this expansion is that chiral symmetry is preserved
(modulo anomalies) separately for each term, and that the
terms are local.
The effective action is a ultraviolet divergent quantity

which needs to be renormalized. The non-perturbative def-
inition of this functional in the general chiral case is not so
straightforward as for vector-like theories (in which there
are no pseudo-scalar nor axial fields) due to the presence
of essential chiral anomalies which affect the imaginary
part (the phase of the fermionic determinant) [7]. Nev-
ertheless such a definition exists [1] and so the effective
action is perfectly well defined also in the chiral case, dis-
playing only the standard renormalization ambiguities in
the form of polynomial terms. The subtleties in the non-
perturbative definition of the effective action are much
alleviated within the asymptotic expansions noted above.
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In particular, within the covariant derivative expansion to
be worked out in this paper for the real part of the effec-
tive action and in [5] for the imaginary part, there is only
a finite number of ultraviolet divergent terms. They are
afflicted by polynomial ambiguities (including anomalies
and multivaluation) but are otherwise unique. All higher
order terms are ultraviolet finite and so they are unam-
biguous.
It should be emphasized that the covariant deriva-

tive expansion of the effective action functional, although
asymptotic, is perfectly well defined; that is, it does not
depend on how it is written or computed. (This is not true
for other expansions such as the commutator expansion,
as we will discuss below.) This is because it corresponds
to classify the terms by their scaling under (covariant)
dilatations of the external fields. Each of these terms is
a well-defined and universal functional, in the sense that
they hold for any possible internal symmetry group, and
the same is true for the perturbative or heat kernel expan-
sions. For these two latter expansions it is relatively easy
to write an explicit form for each term without putting re-
strictions on the internal symmetry group. The reason for
this is that all non-commutative quantities, namely the
matrix-valued external fields, are treated perturbatively
and each term contains only a finite number of them.
On the other hand, in a strict covariant derivative expan-
sion the gauge fields are treated perturbatively but the
scalar and pseudo-scalar fields appear to all orders in ev-
ery single term, and these two fields do not commute with
each other. Nevertheless, in this work and in [5] we show
that the terms of the derivative expansions are also fully
amenable to explicit computation in closed form without
assuming particular properties of the internal symmetry
group. In addition, no chiral rotation (or diagonalization)
is required to express these universal functionals. Our re-
sult takes an analytical form in terms of the external fields.
In this work we deal with the real part of the effective

action and compute it until fourth order in the covariant
derivative expansion for arbitrary even space-time dimen-
sions. The real part is the simplest one since it is free from
essential chiral anomalies and multivaluation. It contains
only a scale anomaly. In [5] the study of the imaginary part
is dealt with at leading order in the derivative expansion
for two- and four-dimensional space-times. Besides the re-
sults themselves, in this paper and in [5] we introduce
notational conventions which are very well suited to the
chiral problem. In particular, we find that the formulas for
the real part in the full chiral case are identical to those
of the vector-like case.
In Sect. 2 we introduce our notational conventions,

some of which are not standard, and also introduce the
effective action. In Sect. 3 we show how, for the real part
of the effective action, an appropriate notation allows to
reduce the full chiral case to the vector-like case, and also
to carry out explicitly all integrations over the momentum
in the fermionic loop. The section ends with explicit for-
mulas for the real part of the effective action up to four
covariant derivatives, based in the convenient method in-
troduced by Chan for bosons [8]. Finally, in Sect. 4 we

illustrate the meaning of the formulas by analyzing the
case of second order and two space-time dimensions and
a particular case is worked out explicitly. Next we show
how our notation allows to obtain commutator expansions
quite efficiently, and the section is ended by giving the
analogous explicit formulas for bosons, once again with-
out restriction on the internal symmetry group.

2 General considerations

2.1 The Dirac operator

The Euclidean effective action of fermions in a d-dimen-
sional flat space (d even) is

∫
ddxψ̄Dψ, where D is the

Dirac operator. The class of operators to be considered is,
in terms of the left–right (LR) fields,

D =D/R PR+ D/L PL +mLRPR +mRLPL, (1)

where PR,L = 1
2 (1±γ5) are the projectors on the subspaces

γ5 = ±1. Our conventions are

γµ = γ†
µ, {γµ, γν} = 2δµν ,

γ5 = γ†
5 = γ−1

5 = ηdγ0 · · · γd−1, trDirac(1) = 2d/2. (2)

Here ηd = ±id/2 (a concrete choice will not be needed).
DR,L

µ = ∂µ + vR,L
µ are the chiral covariant derivatives.

The external bosonic fields vR,L
µ (x) and mLR(x), mRL(x)

are matrices in internal space (referred to as flavor), the
identity in Dirac space and multiplicative operators in x
space. Unitarity of the theory imposes restrictions on the
hermiticity properties of these fields, namely, vR,L must
be antihermitian and m†

LR = mRL. In practice these re-
strictions will play almost no role in the calculation1 and
mLR and mRL will be treated as independent variables.
To avoid infrared divergences we will assume that mLR
and mRL are nowhere singular matrices.
In terms of the vector-axial (VA) variables

D =D/V + A/ γ5 + S + γ5P, (3)

where DV
µ = ∂µ+Vµ is the vector covariant derivative and

vR,L = V ± A, mLR = S + P, mRL = S − P. (4)

2.2 Chiral transformations

Chiral transformations act as follows:

DR
µ → Ω−1

R DR
µ ΩR, DL

µ → Ω−1
L DL

µΩL,

mLR → Ω−1
L mLRΩR, mRL → Ω−1

R mRLΩL, (5)

1 However, we will exploit the fact that the spectrum of
m2

R(x) (defined below in (6)) is non-negative to choose the
branch cuts of the logarithm or squared root functions along
the negative real axis.
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whereΩR,L(x) are independent, nowhere singular and oth-
erwise arbitrary matrices in flavor space. Vector gauge
transformations correspond to chiral transformations in
the diagonal subgroup ΩR = ΩL, i.e. D→ Ω−1DΩ.
It will be convenient to introduce the two combinations

m2
R = mRLmLR, m2

L = mLRmRL, (6)

which transform solely under ΩR or ΩL, respectively. Note
that the two matrices m2

R,L(x) are related by a similarity
transformations, and thus they have the same spectrum.
The different pieces in the Dirac operator transform

in a well-defined manner under chiral transformations,
namely, the quantities mLR, mRL, DR and DL fall in the
chiral representations LR, RL, RR and LL, respectively;
cf. (5). New objects with well-defined chirality are ob-
tained by multiplication in the natural way, i.e., ifXab falls
in the representation ab and Ybc in bc, for a, b, c = R,L, the
product Zac = XabYbc (no sum over b is implied) falls in
the representation ac. If in addition Xab is a multiplicative
operator, its chiral covariant derivative

(D̂µX)ab = Da
µXab − XabD

b
µ, a, b = R,L, (7)

is also multiplicative. In particular,

D̂µmLR := (D̂µm)LR = ∂µmLR + vL
µmLR − mLRv

R
µ ,

D̂µmRL := (D̂µm)RL = ∂µmRL + vR
µmRL − mRLv

L
µ . (8)

In addition,

FR
µν = [D

R
µ , D

R
ν ], FL

µν = [D
L
µ , D

L
ν ], (9)

are also chiral covariant and multiplicative. All multiplica-
tive chiral covariant local objects come as combinations of
m, F and their chiral covariant derivatives.

2.3 The effective action

The fermionic effective action W = − log ∫ Dψ̄Dψ exp(− ∫ ddxψ̄Dψ
)
is given by

W [v,m] = −Tr log(D). (10)

As is well known this expression is formal due to the
presence of ultraviolet divergences. Mathematically proper
definitions of Tr log(D) exist in the literature. Here it is
only necessary to emphasize that different definitions of
W may at most differ by terms which are local polyno-
mial of dimension d, that is, polynomials in the external
fields v and m and their derivatives. This is a standard
result of perturbative quantum field theory that can be
established by isolating the ultraviolet divergent one-loop
Feynman graphs, which may contain at most d insertions,
and expanding on the external momenta to extract the
divergent part. In practice this means that any method
consistent with the formal expression can be used to make
W finite, since it will give the same ultraviolet finite con-
tributions as any other method. The effective action of a

concrete physical system described by the Dirac operator
D will be given by any of the renormalized versions of W
plus an appropriate local polynomial counterterm.
As usual, it will be convenient to introduce the pseudo-

parity transformation, R ↔ L (that is, vL ↔ vR and
mLR ↔ mRL or equivalently Aµ → −Aµ, P → −P ) and
split the effective action into its even and odd components
under this transformation, W±, i.e.,

W [v,m] =W+[v,m] +W−[v,m]. (11)

(These are also known as normal and abnormal parity
components.) Due to parity invariance, which involves an
additional (x0,x) → (x0,−x) in the fields, the pseudo-
parity odd component of the effective action W−[v,m]
is that containing the Levi-Civita pseudo-tensor. In ad-
dition, the W±[v,m] coincide with the real and imagi-
nary parts, respectively, of the (Euclidean) effective action
when the standard hermiticity for the fields is assumed.
By computing the effective action within a derivative

expansion, we mean to express it as a sum of terms with
a well-defined number of covariant derivative operators
but any number of scalars. This is equivalent to the clas-
sification of the terms by the number of Lorentz indices
they contain. We emphasize this since sometimes the ex-
pression “derivative expansion” is used in the literature to
denote large mass expansions or expansions in the num-
ber of all kind of commutators; that is, those implied by
the covariant derivative plus those of the form [m2, ], etc.
Further, we mean to write each of the terms using building
blocks which are multiplicative operators in x space (i.e.,
functions of x and not differential operators) and which
are trivial in Dirac space (since the Dirac trace can be
explicitly computed for any given order in a derivative ex-
pansion). The trace in flavor space will not be worked out
since we are not imposing any algebraic constraint on the
flavor structure of the fields.
Note that, because d is even and all Lorentz invariants

are formed with δµν and ε01...d−1, there are no odd-order
terms in the derivative expansion.
In this work we will consider the pseudo-parity even

component of the effective action which is simpler due to
its lack of chiral anomalies. The pseudo-parity odd com-
ponent is worked out in [5].

2.4 Local basis in flavor space

Occasionally it will be useful to diagonalize the flavor ma-
trices mLR(x) and mRL(x). This can be done by solving
the eigenvalue problem (at each point x)(

0 mRL

mLR 0

)(
|j,R〉

±|j,L〉

)
= ±mj

(
|j,R〉

±|j,L〉

)
(12)

which yields

mLR|j,R〉 = mj |j,L〉, mRL|j,L〉 = mj |j,R〉,
〈j,L|mLR = mj〈j,R|, 〈j,R|mRL = mj〈j,L|. (13)
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〈j,R| is the dual basis of |j,R〉, 〈j,R|k,R〉 = δjk (no or-
thonormality of the basis is implied). The numbers m2

j

are the common eigenvalues of m2
R and m2

L and |j,R〉 and
|j,L〉 are their eigenvectors. Because m†

LR = mRL, the
eigenvalues mj can be taken to be positive.

2.5 Some notational conventions

In this section we will introduce some notational conven-
tions which are essential for carrying out the subsequent
calculations. They are also used in [5].
Because W+ is by definition invariant under the ex-

change of the labels R and L, each term T in the expan-
sion of W+ will have a pseudo-parity conjugate term, T ∗,
obtained from T by exchanging everywhere the labels R
and L. (Note that due to the cyclic property, it may ac-
tually happen that T and T ∗ coincide.) Thus we will use
the following convention:
Convention 1. In W+, the terms T and T ∗ will be identi-
fied, so that under this Convention T actually stands for
(1/2)(T + T ∗).
It is important to note that the word “term” is used

here in a very specific way, namely, it refers only to contri-
butions of the form T = tr(X), that when added produce
the effective action. (By extension, term may denote also
the quantity X itself. In what follows two such quantities
X and Y differing only by a cyclic permutation will be
identified, since they are equivalent inside the trace.) Of
course, the identification implied in Convention 1 does not
apply to smaller pieces or factors inside each term.
Due to chiral covariance each term is a product of fac-

tors with well-defined chirality (namely, LR, RL, RR or
LL) correctly combined to preserve chirality (i.e., · · ·Xab

Ybc · · · ). In addition, due to the cyclic property of the
trace, if a term starts with label a = R,L it has to end also
with same label a, e.g. tr(XRRYRLZLR). Based on these
observations we will make the following convention:
Convention 2. In expressions where the chiral labels are
combined preserving chirality, these labels are redundant
and will be suppressed; thus, a term such as tr(XRRYRL
ZLR) will be written as tr(XYZ). Note that tr(XYZ) could
be expanded either as tr(XRRYRLZLR) or tr(XLLYLRZRL),
but both expressions are equivalent under Convention 1.
We will choose the first label as R.
For instance,

tr(FµνD̂µmD̂νm) = tr(FR
µνD̂µmRLD̂νmLR)

=
1
2
tr(FR

µνD̂µmRLD̂νmLR)

+
1
2
tr(FL

µνD̂µmLRD̂νmRL). (14)

This notation allows one to use the objects m, vµ, etc,
as ordinary operators (i.e., elements of an associative al-
gebra). For instance, the property mf(m) = f(m)m is ver-
ified as is readily checked. With this notation (8) and (9)
become

D̂µm = Dµm − mDµ = [Dµ,m], Fµν = [Dµ,Dν ], (15)

and (13) becomes

m|j〉 = mj |j〉, 〈j|m = mj〈j|. (16)

Another essential property, the cyclic property of the
trace, holds too. For instance,

tr(Xm) = tr(XRLmLR) = tr(mLRXRL)
= tr(mRLXLR) = tr(mX). (17)

Let us note that these conventions have to be slightly mod-
ified to include the pseudo-parity odd component
W−[m, v]. In particular, the cyclic property of the trace is
modified and this fact is at the origin of the chiral anomaly
in this formalism [5].
Below, it will be necessary to carry out parametric in-

tegrations where the parameters appear in different places
tied to operators which do not commute. To do these inte-
grations another convention is needed regarding the order
of operators. Consider for instance the integral∫

ddp

(2π)d
tr
[

m
p2 +m2 vµ

m
p2 +m2 vµ

]
. (18)

It can be computed by first taking the trace using the basis
of eigenvectors of m introduced in Sect. 2.4. This yields an
expression involving matrix elements of vµ in this basis,
namely,∫

ddp

(2π)d
∑
j,k

mj

p2 +m2
j

(vµ)jk
mk

p2 +m2
k

(vµ)kj , (19)

where (vµ)jk = 〈j,L|vL
µ |k,L〉 and (vµ)kj = 〈k,R|vR

µ |j,R〉.
(For definiteness we have assumed that the operator inside
the trace in (18) has been expanded as a RR term.) The
point of taking matrix elements is that, since now every-
thing is in terms of commuting numbers, the momentum
integral can be done explicitly. Instead of that, we will use
an equivalent but preferable procedure, namely, we will la-
bel the matrices m according to their position relative to
vµ. Since there are two vµ there are three possible rela-
tive positions which are labeled by 1, 2 and 3. With this
prescription, the same integral can be represented unam-
biguously by the formula∫

ddp

(2π)d
tr
[

m1

p2 +m2
1

m2

p2 +m2
2
v2
µ

]
. (20)

The usefulness of this notation is that, since the or-
dering is given by the labels, m1 and m2 are effectively
c-numbers and the momentum integration can be carried
out straightforwardly.
Convention 3. In an expression f(A1, B2, . . . )XY · · · the
ordering labels 1, 2, . . . will denote the actual position
of the operators A,B, . . . relative to the fixed elements
X,Y, . . . so that A is to be placed before X, B between X
and Y , etc. That is, for a separable function f(a, b, . . . ) =
α(a)β(b) · · · , the expression stands for α(A)Xβ(B)Y · · ·
Note that the fixed elements X,Y, . . . appear only as

simple factors (i.e. perturbatively) whereas the labeled
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operators A,B, . . . may appear with a non-perturbative
functional dependence. Also, note that several different
labeled operators can have the same label provided that
they commute2. Finally, in an expression with n fixed el-
ements inside the trace, the labels 1 and n+ 1 are equiv-
alent, due to the cyclic property of the trace. So, in the
previous example, m3 = m1. We remark that Convention
3 is independent of Conventions 1 and 2.
The usefulness of this notation can be further exposed

through the following observation regarding commutators.
Let X be a single fixed element and let the symbol DA

denote the operation [A, ], thus it immediately follows
from Convention 3 that DA = A1 − A2; that is,

f(DA)X = f(A1 − A2)X. (21)

For instance,

eAXe−A = eA1e−A2X = eA1−A2X = eDAX, (22)

which is a well-known identity. (Alternatively, this exam-
ple can be regarded as a proof of (21).) This observation
will prove useful to carry out commutator expansions (cf.
Section 4.2).
As another illustration of Convention 3, consider the

following identity, where f(A) depends on the operator A
and δA represent some first order variation of it:

δf(A) =
f(A1)− f(A2)

A1 − A2
δA. (23)

Here δA is the fixed element referred to in the Convention
and A1 and A2 refer to A before and after δA, respectively.
This identity can be proven as follows3. As is well known

δesA =
∫ s

0
dtetAδAe(s−t)A, (24)

where s is a c-number parameter. Using Convention 3, this
can be rewritten as

δesA =
∫ s

0
dtetA1+(s−t)A2δA =

esA1 − esA2

A1 − A2
δA, (25)

where in the last step we have used that A1 and A2 are
commuting quantities. This identity is then generalized for
arbitrary f(A) by Fourier transformation. From another
point of view, noting that A1 − A2 is equivalent to [A, ]
for any A, (23) is equivalent to [A, δf(A)] = [f(A), δA],
which is a trivial consequence of δ[A, f(A)] = 0.
Inside a trace the two ordering labels 1 and 2 become

identical due to the cyclic property; therefore, (23) yields

Tr (δf(A)) = Tr (f ′(A)δA) . (26)

2 The separation into fixed elements and labeled operators is
a matter of convenience. It is also possible to label all operators
to indicate their relative position and this is often useful in
order to carry out algebraic manipulations with a computer.

3 Alternatively it can be proven by starting from δ(A−1) =
−A−1δAA−1 = −A−1

1 A−1
2 δA and applying it to f(A) =

(2πi)−1 ∫
Γ
dzf(z)/(z − A), where Γ is positively oriented and

encloses the spectrum of A, or also it can be established by
considering functions of the form f(x) = xn.

(f ′ denotes the derivative of f .) The corresponding for-
mula for two successive first order variations, is

Tr (δ′δf(A))

= Tr
(
f ′(A)δ′δA+

f ′(A1)− f ′(A2)
A1 − A2

δ′AδA
)
,(27)

which in particular implies Tr ([δ′, δ]f(A)) = Tr(f ′(A)
[δ′, δ]A).

3 Calculation of W + to fourth order

3.1 Reduction to a vector-like theory

A first benefit of Conventions 1 and 2 is that the functional
W+[v,m] will be formally identical to the effective action
of a vector-like theory. That is, if WV[V, S] denotes the
effective action functional when Aµ = P = 0,

W+[v,m] =WV[v,m], (28)

provided that W+[v,m] and WV[V, S] have been renor-
malized preserving chiral and vector gauge invariances,
respectively. This is because when the functional W+, ex-
pressed in our notation in terms of v and m, is applied
to the vector-like case (i.e., vR = vL, mLR = mRL) no
simplification occurs; it remains unchanged in our nota-
tion. (W− vanishes for vector-like configurations.) As a
consequence, W+ for the general case can be obtained by
computing only the effective action for vector-like config-
urations.
It is an essential point of this discussion that we are

considering field configurations which are free of con-
straints in flavor space: the calculation of W+[v,m]
through WV[V, S] requires Vµ and S to be generic in fla-
vor space for the formal replacements V → v and S →
m in the formulas to be well defined. For instance, if
the calculation of WV[V, S] were carried out in the par-
ticular case of commuting Vµ and S, [Vµ, S] would be
identified with zero and this would result in an ambigu-
ity in W+[v,m] by terms [vµ,m]; however, [vµ,m]RL =
[Vµ,mRL] + {Aµ,mRL}, which does not vanish even for
Abelian flavor groups, due to the axial term. Therefore
the proper procedure is first to compute WV[V, S] in gen-
eral, then make the replacements V → v and S → m,
and afterwards apply the resulting formulas to the case at
hand. This replacement is a kind of analytical continua-
tion from the vector-like to the chiral case.

3.2 Chan’s method

Here we present the most efficient method to compute
W+. Further heuristic considerations are made in Sect. 4.
We have already reduced the problem to a vector-like one,
with effective operator D =D/ +m. Next, the theory is re-
duced to a bosonic one using D†D as operator. This pro-
cedure is standard. We have

D =D/ +m, D† = γ5Dγ5 = − D/ +m. (29)
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The second equality implies that D and D† are related by
a similarity transformation, and so they can be assigned
the same determinant, thus:

W+[v,m] = −1
2
Tr log

(
D†D

)
. (30)

Two remarks are in order. First, the notation D† assumes
that the fields have the standard hermiticity, but only the
fact that D† is similar to D is essential. Second, within
a given particular renormalization prescription (e.g. the
ζ-function) (30) will be correct modulo local polynomial
counterterms. This is entirely sufficient since, as noted
above, the action only determines the effective action mod-
ulo a local polynomial of dimension d.
The bosonic operator D†D can be worked out to give

D†D = −D2
µ − 1

2
σµνFµν − [D/,m] +m2

= P 2 + U, (31)

where γµγν = δµν + σµν , and

Pµ = Dµ, P 2 = −P 2
µ , U = m2 − γµD̂µm − 1

2
σµνFµν .

(32)

(Note that P 2 is unrelated to the pseudo-scalar field P =
(mLR − mRL)/2.)
A manifestly gauge invariant form for the derivative

expansion of the effective action of a general bosonic the-
ory with Klein–Gordon operator of the form P 2 + U has
been given in [8] to fourth order and in [9] to sixth order.
Those formulas assume only that Pµ is a covariant deriva-
tive, i.e., that they are of the form ∂µ +Wµ(x), and that
U(x) is a Lorentz-scalar field. The fields Wµ(x) and U(x)
are matrices in some internal space. To fourth order the
result is4

Tr log(P 2 + U)

=
∫
ddxddp

(2π)d
tr

[
− log(N) + p2

d
N2

µ − 2p4

d(d+ 2)

×
(

− 2N4
µ + (NµNν)2 + 2(NNµµ)2

+4NFµνNNµNν + (FµνN
2)2
)
+ · · ·

]
, (33)

where the following quantities have been defined:

N =
1

p2 + U
, Nµ = [Pµ, N ], Nµµ = [Pµ, [Pµ, N ]],

Fµν = [Pµ, Pν ]. (34)

In addition, N4
µ stands for (N

2
µ)

2, and (NµNν)2 = NµNν

NµNν , etc. The symbol tr includes all internal degrees of
freedom. The dots refer to terms with six or more Pµ.

4 A misprint in the formula presented in [8] was corrected in
[9].

All terms are multiplicative operators (i.e. just functions
of x) and manifestly gauge invariant. Because all terms
are multiplicative, the trace cyclic property applies with-
out restrictions. In what follows, terms related by a cyclic
permutation will be identified when they appear inside the
trace.
Equation (33) can straightforwardly be applied to com-

pute W+ with the identifications

Nµ = D̂µN, Nµµ = D̂2
µN, Fµν = Fµν , (35)

and N and U given in (32). It is just necessary to note
that in the bosonic case U is assumed to be of zeroth
order; however, in the fermionic case U contains terms of
first and second order in Dµ, so N has to be reexpanded in
order to have a well-defined derivative expansion of W+:

N−1 = ∆+ U (1) + U (2), ∆ = p2 +m2,

U (1) = − γµD̂µm, U (2) = −1
2
σµνFµν . (36)

Before proceeding, two comments can be made. First,
DD† can be used instead of D†D. It corresponds to the
replacement m → −m in the previous expressions, so W+

is an even functional of m. This is readily verified in the
final expression. Second, D2 would also produce another
acceptable bosonic operator P ′2 + U ′, with P ′

µ = Dµ +
γµm. However, this form is not suitable for a derivative
expansion, because γµm is of zeroth order. This implies
that low orders in the derivative expansion of the fermionic
problem would pick up contributions from all orders in the
bosonic derivative expansion.
Combining the previous equations, and after taking

the Dirac trace, the following result is obtained5:

W+
0 [v,m] = −2

d/2

2

∫
ddxddp

(2π)d
tr log∆, (37)

W+
2 [v,m] = −2

d/2

2

∫
ddxddp

(2π)d

tr

[
−1
2

(
1
∆

mµ

)2

+
p2

d

(
1
∆2 (m

2)µ

)2
]
, (38)

W+
4 [v,m] = −2

d/2

2

∫
ddxddp

(2π)d

×tr
[
−1
2

(
1
∆

mµ

)4

+
1
4

(
1
∆

mµ
1
∆

mν

)2

+
1
∆

mµ
1
∆

mν
1
∆

Fµν +
1
4

(
1
∆

Fµν

)2

+
p2

d

{
2
(
1
∆2 (m

2)µ
1
∆

mν

)2

+ 2
1
∆2 (m

2)µ
1
∆2 mν

1
∆

×(m2)µ
1
∆

mν + 2
1
∆
(m2)µ

1
∆2 (m

2)µ
1
∆

mν
1
∆2 mν

5 We will use the notations W+
n [v, m] and W+

n,d[v, m] where
n specifies the order in the derivative expansion and d the
space-time dimension.
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+4
(
1
∆2 (m

2)µ

)2(1
∆

mν

)2

− 4 1
∆2 (m

2)µ
1
∆

mν
1
∆2 mµν

−4 1
∆2 (m

2)µ
1
∆2 mν

1
∆

mµν +
(
1
∆2 mµν

)2
}

− 2p4

d(d+ 2)

{
−2
(
1
∆2 (m

2)µ

)4

+
(
1
∆2 (m

2)µ
1
∆2 (m

2)ν

)2

+ 8
(
1
∆3 (m

2)µ
1
∆
(m2)µ

)2

+2
(
1
∆3 (m

2)µµ

)2

− 8 1
∆3 (m

2)µ
1
∆
(m2)µ

1
∆3 (m

2)νν

+4
1
∆2 (m

2)µ
1
∆2 (m

2)ν
1
∆2 Fµν +

(
1
∆2 Fµν

)2
}]

. (39)

2d/2 is the dimension of Dirac space and tr stands for trace
on flavor space only. Two further notational conventions
have been used. First, if I is an ordered set of Lorentz
indices, XµI denotes6 D̂µXI ; thus, for instance,

mµ = D̂µm, mµν = D̂µ(D̂νm). (40)

Second, the bosonic determinant and all manipulations
used are invariant under the transformation defined by

m 
→ m† = m, Dµ 
→ D†
µ = −Dµ, (XY )† = Y †X†

(41)

(this is just the Hermitian conjugation when the fields
have the standard hermiticity). So, for instance,

m†
µ = mµ, m†

µν = mµν , F†
µν = −Fµν . (42)

Therefore, all terms in the previous formulas either are
self-conjugated or come in conjugated pairs. In writing the
formula for W+

4 [v,m] each term has been identified with
its conjugate [9,10]. For instance, ∆−2(m2)µ∆−1mν∆

−2

mµν , actually stands for

1
2
1
∆2 (m

2)µ
1
∆

mν
1
∆2 mµν +

1
2
1
∆2 mν

1
∆
(m2)µ

1
∆2 mµν .

(43)

(Recall that terms related by a cyclic permutation are
identified due to the trace.)
In deriving the formulas for W+ the identity(

1
∆

)
µ

= − 1
∆
(m2)µ

1
∆

(44)

has been employed. In general, it will not be practical
to further expand (m2)µ as mmµ + mµm, since m2 is a
chirality preserving quantity and so it is better behaved
than m. From the method used it follows that W+ can be
written in such a way that single factors m appear only
through derivatives, i.e. mµ, mµν , etc., and underivated m
are always squared.

6 Note that in [9] this is denoted by XIµ.

3.3 Momentum integrals

Using Convention 3, all momentum integrals in (37), (38)
and (39) can explicitly be computed. The ultraviolet di-
vergences can be dealt with by using dimensional regular-
ization. The basic integral is of the form

In,k,d(z1, . . . , zn; ε)

=
(4π)d̂/2Γ (d̂/2)
(4π)d/2Γ (d/2)

∫
dd̂p

(2π)d̂
(
p2)r n∏

i=1

1
∆i

, (45)

where

d̂ = d − 2ε, k =
d

2
+ r − 1, ∆i = p2 + z2

i . (46)

Here, z1, . . . , zn are independent non-vanishing variables
(to be replaced later by m). The integral can be done
straightforwardly and gives

In,k,d =
Γ (k − ε+ 1)Γ (−k + ε)

(4π)d/2Γ (d/2)

n∑
i=1

(z2
i )

k−εRn,i, (47)

with

Rn,i(z1, . . . , zn) =
∏
j �=i

1
z2
j − z2

i

. (48)

Finally, expanding in powers of ε yields

In,k,d =
1

(4π)d/2Γ (d/2)

×
(
Hn,k +

(
1
ε

− log(µ2)
)
Qn,k +O(ε)

)
. (49)

where the following functions have been introduced:

Hn,k(z1, . . . , zn;µ) = (−1)k+1
n∑

i=1

(z2
i )

k log(z2
i /µ

2)Rn,i,

Qn,k(z1, . . . , zn) = (−1)k
n∑

i=1

(z2
i )

kRn,i. (50)

Several comments are in order here.

(i) As indicated by the notation, the functions Hn,k and
Qn,k do not directly depend on the space-time di-
mension.

(ii) Following standard practice, the parameter µ2 has
been introduced for convenience in the dimensional
counting. The integral In,k,d does not depend on µ2

and so its dependence cancels in the r.h.s. of (49). Un-
der a scale transformation, Rn,i and Qn,k transform
homogeneously, but

z2
i 
→ λz2

i , Hn,k 
→ λk+1−n (Hn,k − log(λ)Qn,k) .
(51)

Therefore, Qn,k represents the contribution of the in-
tegral to the scale anomaly.
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(iii) Whenever the integral In,k,d is infrared and ultravi-
olet convergent, the function Qn,k must vanish:

Qn,k = 0 when 1 ≤ k + 1 < n. (52)

This is because as ε goes to zero, In,k,d has to re-
main finite. In addition, log(µ2) no longer appears
and there is no scale anomaly. When the integral
is infrared finite (k ≥ 0, which is the case of inter-
est), but not necessarily ultraviolet finite, the func-
tions Qn,k are just homogeneous polynomials in the
squared masses, z2

i , since taking a sufficient number
of derivatives of In,k,d with respect to the any of the
z2
i , turns the integral into a ultraviolet convergent
one.

(iv) The ultraviolet finite prefactor ((4π)d̂/2Γ (d̂/2))/
((4π)d/2Γ (d/2)) has been introduced in the definition
of In,k,d for convenience, in order to remove renormal-
ization dependent constant terms (the usual log(4π)−
γ of the MS scheme) in (49). Those constant terms
would come with Qn,k and would amount to further
polynomial contributions to the effective action.

(v) From the definition of In,k,d, it follows that Hn,k and
Qn,k are completely symmetric functions of the m2

i ,
and furthermore, they remain finite as two or more
of the squared masses become equal. (Qn,k is a poly-
nomial so the finiteness is obvious in this case.)

(vi) The identity

1
∆i

1
∆j

= − 1
z2
i − z2

j

(
1
∆i

− 1
∆j

)
(53)

gives rise to the following recurrence relation:

In,k,d(z1, z2, . . . ; ε) = (54)
In−1,k,d(z2, z3, . . . , zn; ε)− In−1,k,d(z1, z3, . . . , zn; ε)

z2
1 − z2

2
.

As a consequence, analogous recurrence relations ap-
ply to Hn,k and Qn,k as well, and they can be used
to compute these functions starting from

H1,k = (−1)k+1(z2
1)

k log(z2
1/µ

2),

Q1,k = (−1)k(z2
1)

k. (55)

More generally, it will be necessary to consider also
the case of ∆i raised to different powers in the momentum
integral, (45), namely

Ir1,...,rn

n,k,d (z1, . . . , zn; ε)

=
(4π)d̂/2Γ (d̂/2)
(4π)d/2Γ (d/2)

∫
dd̂p

(2π)d̂
(
p2)r n∏

i=1

1
∆ri

i

. (56)

The ri are assumed to be positive integers. Obviously, this
integral is given by the previous formulas by taking the
first r1 arguments to be all of them equal z1, then the
next r2 arguments to be z2, and so on. That is,

Ir1,...,rn

n,k,d (z1, . . . , zn; ε)

= Ir1+···+rn,k,d(z1, . . . , z1, . . . , zn, . . . , zn; ε), (57)

where in the r.h.s. each zi appears ri times. The cor-
responding analogous definitions apply to Hr1,...,rn

n,k and
Qr1,...,rn

n,k .
Alternatively, the same result is obtained taking

derivatives with respect to the z2
i . For instance,

Hr1,...,rn

n,k (z1, . . . , zn;µ)

=
n∏

i=1

[
(−1)ri−1

(ri − 1)!
∂ri−1

∂(z2
i )ri−1

]
Hn,k(z1, . . . , zn;µ). (58)

Analogous formulas hold for Ir1,...,rn

n,k,d and Qr1,...,rn

n,k .
It is interesting to note that Hn,k has the form of a

rational function times a logarithm of z2
i /µ

2 (see remark
(iv) above). This needs not be true for Hr1,...,rn

n,k ; taking
the coincidence limit zi = zj or derivating with respect to
z2
i yields further terms which are purely rational functions
of the masses, without logarithms.

3.4 Normal parity effective action through fourth order

The momentum integrals in (37), (38) and (39) can
straightforwardly be worked out using the previous formu-
las for Ir1,...,rn

n,k,d . In the spirit of dimensional regularization,
the variable d in (37), (38) and (39) (except that in ddx)
should be replaced by d̂ = d − 2ε and a Laurent expan-
sion in ε is to be performed. After that there will be two
types of terms. First, contributions coming from (1/ε −
log(µ2))Qr1,...,rn

n,k in the momentum integral. These pick
up ultraviolet divergent terms plus finite terms from the ε
in d̂. And second, there will be finite terms from Hr1,...,rn

n,k .
The first kind of contributions are just polynomials and
so renormalization dependent. Because all our formulas
are already manifestly gauge invariant before momentum
integration, those polynomials are gauge invariant and re-
movable by counterterms. (Within other schemes, the di-
vergent polynomial terms would still be gauge invariant
but not necessarily the finite parts.) Therefore, modulo
polynomials, the effective action can be obtained by using
d instead of d̂ and keeping only the finite part Hr1,...,rn

n,k in
the momentum integrals.
The calculation of W+

0 [v,m] in (37) can be done by
first taking the derivative with respect to m2. This re-
moves the logarithm and allows for the application of the
momentum integrals derived in the previous subsection.
W+

0 [v,m] is then obtained by integrating back with re-
spect to m2. This introduces an ambiguity which is just a
polynomial.

W+
0,d[v,m] = − (−1)d/22d/2

2(4π)d/2Γ (d/2 + 1)

×
∫
ddxtr

[
md log(m2/µ2)

]
. (59)

Using our Convention 3 and the integrals of the pre-
vious section, the expressions for W+

2 [v,m] and W+
4 [v,m]
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are a direct transcription of (38) and (39). In the following
formulas the arguments z1, . . . , zn of H

r1,...,rn

n,k have to be
substituted by m1, . . . ,mn.

W+
2,d[v,m] = −1

2
2d/2

(4π)d/2Γ (d/2)

×
∫
ddxtr

[
−1
2
H1,1

2,d/2−1m
2
µ +

1
d
H2,2

2,d/2(m
2)2µ

]
, (60)

W+
4,d[v,m] = −1

2
2d/2

(4π)d/2Γ (d/2)

×
∫
ddxtr

[
−1
2
H1,1,1,1

4,d/2−1m
2
µm2

ν +
1
4
H1,1,1,1

4,d/2−1(mµmν)2

+H1,1,1
3,d/2−1mµmνFµν +

1
4
H1,1

2,d/2−1F
2
µν

+
2
d
H2,1,2,1

4,d/2 ((m
2)µmν)2 +

2
d
H2,2,1,1

4,d/2 ((m
2)µmν)2

+
2
d
H1,2,1,2

4,d/2 (m
2)2µm2

ν +
4
d
H2,2,1,1

4,d/2 (m
2)2µm2

ν

−4
d
H2,1,2

3,d/2(m
2)µmνmµν − 4

d
H2,2,1

3,d/2(m
2)µmνmµν

+
1
d
H2,2

2,d/2m
2
µν +

4
d(d+ 2)

H2,2,2,2
4,d/2+1(m

2)2µ(m
2)2ν

− 2
d(d+ 2)

H2,2,2,2
4,d/2+1((m

2)µ(m2)ν)2 − 16
d(d+ 2)

×H3,1,3,1
4,d/2+1(m

2)2µ(m
2)2ν − 4

d(d+ 2)
H3,3

2,d/2+1(m
2)2µµ

+
16

d(d+ 2)
H3,1,3

3,d/2+1(m
2)2µ(m

2)νν − 8
d(d+ 2)

H2,2,2
3,d/2+1

×(m2)µ(m2)νFµν − 2
d(d+ 2)

H2,2
2,d/2+1F

2
µν

]
. (61)

4 Discussion

4.1 Expression in terms of matrix elements

In order to analyze the previous formulas, let us consider
in more detail the second order term in two space-time di-
mensions, W+

2,2[v,m]. A straightforward calculation yields

W+
2,2[v,m] =

1
8π

∫
d2xtr

[
H(m1,m2)m2

µ

− (m2
1 +m2

2)H(m1,m2)− 2
(m2

1 − m2
2)2

(m2)2µ

]
, (62)

where

H(x, y) =
log(x2/y2)
x2 − y2 . (63)

The symmetry under the exchange of the ordering labels
1, 2 is a direct consequence of the cyclic property of the
trace.
As noted, this kind of formulas can be evaluated using

a basis of eigenvectors of m2 at each point x. This gives
(Convention 1 is still at work)

W+
2,2[v,m]

=
1
8π

∫
d2x

∑
j,k

[
H(mj ,mk)(D̂µmRL)jk(D̂µmLR)kj

− (m
2
j +m2

k)H(mj ,mk)− 2
(m2

j − m2
k)2

(D̂µm
2
R)jk(D̂µm

2
R)kj

]
. (64)

In this formula (D̂µmRL)jk = 〈j,R|D̂µmRL|k,L〉, etc. The
quantities m2

R,L were defined in (6).
Particular attention requires the case of m2

1 and m2
2

with the same eigenvalue. Before momentum integration
it is clear that this case is a perfectly regular one. It follows
that the correct result after momentum integration can be
obtained by taking the finite formal limit m2

2 → m2
1, and

then replacing m2 by its eigenvalue. That is, in (64) the
case j = k (or more generally, m2

j = m2
k) is resolved by

taking the limit m2
k → m2

j which is well defined and finite,
namely

1
8π

∫
d2x

∑
j

(
1
m2

j

(D̂µmRL)jj(D̂µmLR)jj

− 1
6m4

j

(D̂µm
2
R)

2
jj

)

=
1
8π

∫
d2x

∑
j

(
2
3m2

j

(D̂µmRL)jj(D̂µmLR)jj

− 1
3m2

j

(D̂µmRL)2jj

)
. (65)

This is the full result in the Abelian case.
As an application, consider mLR(x) = M(x)U(x),

mRL(x) = M(x)U−1(x), where M(x) is a c-number but
not necessarily constant. Since m2 = M2 is a c-number,
the calculation can be done directly from (62) by taking
m2 =M2 everywhere. This gives

W+
2,2 =

1
4π

∫
d2xtr

[
1
6

(
∂µM

M

)2

− 1
2
(U−1D̂µU)2

]
. (66)

4.2 Commutator expansions

The derivative expansion treats m non-perturbatively. In
other approaches the result appears instead in the form
of a 1/m-like expansion such that each term is an homo-
geneous function of m [11,1]. The order of each term in
such an expansion is counted by the number of commuta-
tors (including those implied by the covariant derivative).
Therefore, when operators m in the middle of an expres-
sion are moved to the left, producing commutators, the
new terms so generated count as higher order than the
original one and hence they are suppressed in this count-
ing. Although the present work is devoted to derivative
expansions, in this subsection we will consider the com-
mutator expansion of our formulas.
Using our Convention 3 it is remarkably simple to sys-

tematically reexpand W+ in terms of commutators. This
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can be illustrated withW+
2,2 in the form given in (80) (this

expression will be derived below). From (21) it follows that
the quantity

c1 = m1 − m2 (67)

is equivalent to a commutator [m, ] on the first mµ. For
instance,

c2
1m

2
µ = (m1 − m2)2m2

µ = (m1 − m2)[m,mµ]mµ

= [m, [m,mµ]]mµ. (68)

Therefore, a commutator expansion is obtained by remov-
ing the variable m2 in favor of c1, i.e., m2 = m1 − c1, and
carrying out an expansion in powers of c1:

−m1m2H(m1,m2)− 1
(m1 − m2)2

=
1
6
1

m2
1
+
1
6

c1

m3
1
+
2
15

c2
1

m4
1
+ · · ·
(69)

This immediately translates into

W+
2,2[v,m] =

1
4π

∫
d2xtr

[
1
6m2 m2

µ +
1
6m3 [m,mµ]mµ

+
2

15m3 [m, [m,mµ]]mµ + · · ·
]
. (70)

ForW+
4 (or higher orders) the identity cn = mn−mn+1

can be used, where cn denotes the commutator [m, ] on
the n-th fixed element.
Due to the cyclic property (and in particular integra-

tion by parts when Dµ is involved) neither the derivative
expansion nor the commutator expansion take a unique
form. However, there is an important difference between
both expansions regarding their uniqueness, namely, the
derivative expansion is related to (gauge covariant) dilata-
tions of the external fields v and m; each order is tied to
a given power of the dilatation parameter. This guaran-
tees that each order in the derivative expansion is a well-
defined functional of v and m. (That is, each given order
can be written in different forms but has a single numer-
ical value for each given configuration of the fields.) On
the other hand, the commutator expansion is not tied to
any expansion parameter and so it is possible to have two
different commutators expansions of a single functional
which differ numerically at every order. For instance, in
the identity

tr(2m[m,mµ]mµ) = tr([m, [m,mµ]]mµ) (71)

the same functional is represented by two terms of differ-
ent order (i.e., with a different number of commutators),
even imposing a standard form (m1 and c1 have been cho-
sen as the independent variables). More generally, a func-
tional of the form tr(f(m1,m2)m2

µ) depends only on the
symmetric component of the function f(x1, x2), but the
antisymmetric component may have a non-vanishing com-
mutator expansion when m1 and c1 are used as the inde-
pendent variables. This suggest to first symmetrize f and

then expand7. In any case, the usefulness for our notation
to analyze this kind of problems and even more for more
complicated cases, such as contributions to W+

4 or higher
orders, is clear.
The ambiguity in the commutator expansion allows

one to reorder W+
2,2 so that the symmetry under the ex-

change of the ordering labels 1, 2 in the right-hand side
of (69) is restored. A convenient choice, containing even
orders only, is

−m1m2H(m1,m2)− 1
(m1 − m2)2

=
1
6

1
m1m2

+
1
30

c1

m2
1

c2

m2
2

+
1
140

c2
1

m3
1

c2
2

m3
2
+ · · · , (72)

where c2 = m2 −m3 = −c1 represents [m, ] on the second
mµ. This expansion can be obtained from that in (69)
by recursively subtracting the symmetric version of the
leading term and then symmetrizing the remainder. Equa-
tion (72) translates into

W+
2,2[v,m]

=
1
4π

∫
d2xtr

[
1
6

(
1
m

mµ

)2

+
1
30

(
1

m2 [m,mµ]
)2

+
1
140

(
1

m3 [m, [m,mµ]]
)2

+ · · ·
]
. (73)

The commutator expansion just derived is well suited
for the vector-like case. In many cases, however, an expan-
sion involving commutators of m2 will be more useful. For
instance, in the Abelian case m2 is always a (not necessar-
ily constant) c-number whereas m is not (i.e. [m,X] needs
not vanish even when X is a multiplicative operator). The
method to obtain such an expansion is the same as above
and can be applied to W+

2,2 in (62). Namely, the quantity

C1 = m2
1 − m2

2 (74)

represents [m2, ] applied to the first fixed factor (mµ or
(m2)µ) thus m2

2 can eliminated in favor of C1 in (62). This
gives

H(m1,m2)

=
1

m2
1
+

C1

2m4
1
+

C2
1

3m6
1
+

C3
1

4m8
1
+

C4
1

5m10
1
+ · · · ,

(m2
1 +m2

2)H(m1,m2)− 2
(m2

1 − m2
2)2

=
1
6m4

1
+

C1

6m6
1
+
3C2

1

20m8
1
+

2C3
1

15m10
1
+

5C4
1

42m12
1
+ · · · . (75)

Further, applying a (in this case partial) symmetrization
in the labels 1, 2 to remove terms with an odd number of
commutators yields

7 What seems to be true is that, for a given non-vanishing
functional, the order of the leading term (i.e., the number of
commutators in the term with the least number of commuta-
tors) has an upper bound over the set of all possible commu-
tators expansions of the functional.
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H(m1,m2)

=
1

m2
1

(
1 +

1
6

C1C2

m2
1m

2
2
+
1
30

C2
1C

2
2

m4
1m

4
2
+ · · ·

)
,

(m2
1 +m2

2)H(m1,m2)− 2
(m2

1 − m2
2)2

=
1
6

1
m2

1m
2
2
+
1
60

C1C2

m4
1m

4
2
+

1
420

C2
1C

2
2

m6
1m

6
2
+ · · · . (76)

(Here C2 = m2
2 − m2

3 = −C1.) This translates into

W+
2,2[v,m]

=
1
8π

∫
d2xtr

[
1

m2

(
m2

µ +
1
6

(
1

m2 [m
2,mµ]

)2

+
1
30

(
1

m4 [m
2, [m2,mµ]]

)2

+ · · ·
)

−1
6

(
1

m2 (m
2)µ

)2

− 1
60

(
1

m4 [m
2, (m2)µ]

)2

− 1
420

(
1

m6 [m
2, [m2, (m2)µ]]

)2

+ · · ·
]
. (77)

In fully expanded notation the leading term is (com-
pare with (65))

W+
2,2,leading[v,m]

=
1
16π

∫
d2xtr

[
1

m2
R
D̂µmRLD̂µmLR +

1
m2

L
D̂µmLR

×D̂µmRL − 1
6

(
1

m2
R
D̂µm

2
R

)2

− 1
6

(
1
m2

L
D̂µm

2
L

)2
]
. (78)

In the example considered above, m2 =M2 a (not neces-
sarily constant) c-number, this is the full contribution.

4.3 Alternative expressions

The expression in (62) can be somewhat simplified by us-
ing the identity (valid inside the trace)

(m2)2µ = {m,mµ}2 = (m1 +m2)(m2 +m3)m2
µ

= (m1 +m2)2m2
µ (79)

(recall that m3 = m1 due to the cyclic property). This
yields the formula

W+
2,2[v,m] = − 1

4π

∫
d2xtr

[
m1m2H(m1,m2)− 1

(m1 − m2)2
m2

µ

]
.

(80)

In most instances, in order to use this kind of formulas
it should be clear which are the chiral labels L,R in each
of the factors. The simplest way to determine this is by
forcing that the ordering labels 1, 2 appear only in m2,
since this object is either RR or LL and so does not flip the

chirality label. This can always be achieved by splitting
the expression into components which are even or odd
underm1 → −m1 andm2 → −m2, that is, in an expression
of the form tr[f(m1,m2)m2

µ]

f(m1,m2) = A(m2
1,m

2
2) +m1m2B(m2

1,m
2
2). (81)

(Note that any expression must be even under m → −m
since there should be the same number of R and L labels.
Therefore, no terms of the formm1D(m2

1,m
2
2)+m2F (m2

1,m
2
2)

can appear.) Applying this procedure to (80) yields

W+
2,2[v,m]

= − 1
4π

∫
d2xtr

[
(m2

1 +m2
2)H(m1,m2)− 2
(m2

1 − m2
2)2

(mmµ)2

+
2m2

1m
2
2H(m1,m2)− (m2

1 +m2
2)

(m2
1 − m2

2)2
m2

µ

]
. (82)

Now, from our conventions it unambiguously follows that
in the first term the chiral labels of m2

1 and m2
2 as well

as the labels of both factors (mmµ) are RR. In the second
term, m2

1 is RR, m
2
2 is LL, the first factor mµ is RL and the

second one is LR. (Recall that under Convention 1, each
term is identified with its pseudo-parity conjugate.) This
allows to take matrix elements as in (64) in a straightfor-
ward manner. (The original expression (62) was already in
this form.) The procedure expressed by (81) shows that
any expression, such as that in (80), can be brought to
a standard form, (82), which is free of ambiguities, i.e.,
the expression can be expanded undoing the Conventions
1 and 2 in an unambiguous way. This procedure immedi-
ately extends to more than two variables, as required in
W+

4 or higher order terms.
An essential point in this discussion is that, in an ex-

pression such as tr(f(m1,m2)m2
µ), the function f(x1, x2)

must be regular in the coincidence limits. To further ana-
lyze this point, consider the contributions to W+

2,2 in (80)
coming solely from vµ, i.e. setting ∂µ to zero (recall that
Dµ = ∂µ + vµ). Using the identity

[vµ,m]2 = −(m1 − m2)2v2
µ, (83)

which holds inside the trace, this gives

W+
2,2[v,m] =

1
4π

∫
d2xtr

[
(m1m2H(m1,m2)− 1) v2

µ

]
+ O(∂). (84)

Because the action depends exclusively on the combina-
tion D = ∂+v and no algebraic assumption has been made
on v (it can be an arbitrary matrix), it is clear that the
whole effective action can be reconstructed from the case
∂µ = 0 by means of the replacement v → D everywhere
(this a reciprocal of the usual gauging procedure). So in a
formal sense

W+
2,2[v,m] =

1
4π

∫
d2xtr

[
(m1m2H(m1,m2)− 1)D2

µ

]
.

(85)
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This is meaningful provided that Dµ (or vµ prior to the
“gauging”) appears only in commutators. Under our Con-
vention 3, this can be easily enforced through the formal
identity

D2
µ = − m2

µ

(m1 − m2)2
. (86)

The minus sign comes because mµ = Dµm − mDµ =
(m2 −m1)Dµ for the first Dµ in (85), whereas mµ = (m3 −
m2)Dµ = (m1 − m2)Dµ for the second one. This immedi-
ately recovers the correct expression (80).
This does not mean however that the formal proce-

dure is always justified. In fact, we could have considered,
instead of (86), a different formal expression, namely

D2
µ = − (m2)2µ

(m2
1 − m2

2)2
. (87)

This can be used in (85) and the result can be rewritten
(in the spirit of (81)) as

W+
2,2[v,m] = − 1

4π

∫
d2xtr

1
(m2

1 − m2
2)2

× [H(m1,m2)(m(m2)µ)2 − (m2)2µ
]
. (88)

This expression is incorrect if taken naively. Because it
involves derivatives of m2 only, it would predict, for in-
stance, a vanishing value for W+

2,2 when m is on the chiral
circle, i.e. when m2 is a constant c-number, or that W+

2,2
does not depend on the axial field in the Abelian case,
both predictions being wrong. The reason is that (86) in-
troduces a singularity at m1 = m2 which is canceled by
the numerator m1m2H(m1,m2)− 1, but (87) introduces a
new singularity at m1 = −m2 which is not canceled; each
of the terms in (88) is not separately finite when m2

1 = m2
2

and in general they cannot cancel to each other due to
their different chiral labels. This renders the expression
meaningless unless (m2)µ is expanded to cancel the spuri-
ous singularity at m1 = −m2.
The fact that the formal expression (85) can be pro-

moted to a regular expression with Dµ in commutators (cf.
(80)) is a manifestation of gauge invariance. It is perhaps
interesting to note that the gauge invariance of (85) can
be checked even without actually bringing Dµ into com-
mutators. Namely, Dµ appears only in commutators in an
expression, if and only if, the expression remains invariant
under the shift Dµ → Dµ + aµ, where aµ is an arbitrary
constant c-number. That the formula (85) is gauge invari-
ant can be seen by applying this test: it is readily seen that
in the terms with aµ, m1 and m2 coincide (since m and aµ

commute) and the limit m1 → m2 gives zero. (That it is a
double zero follows from symmetry under exchange of the
labels 1, 2.)
Finally, let us mention that (84), and thus (85), can

be obtained rather directly in several ways without using
Chan’s method. The key point is that in the absence of ∂µ

all quantities are multiplicative operators and the cyclic
property holds. The procedure implied by combining (85)
and (86) can then be extended to compute W+

2 [v,m] in

any number of dimensions. However, this method is not
suitable to treat the case of four or more derivatives. For
instance, the formula similar to (85) to fourth order is

W+
4,2 =

1
4π

∫
d2xtr [((m1m3 − m2m4)H4,1

+ m1m2m3m4H4,0)DµDµDνDν

− 1
2
((m1m3 +m2m4)H4,1

+ m1m2m3m4H4,0)DµDνDµDν ] , (89)

where H4,k are the functions of m1,m2,m3,m4 defined in
(50). Using their explicit form and the test noted above of
shifting Dµ by a constant c-number, it is possible to check
that the previous formula is chiral invariant (of course,
this is just a check of the calculation). However, there is
no simple systematic procedure for bringing it to an ex-
plicitly invariant form where all covariant derivatives ap-
pear only in commutators. The trick introduced in (86)
works in W+

2 , because Dµ appears there as a first covari-
ant derivative. Such a replacement is no longer sufficient
in W+

4 since explicit chiral invariance requires at least the
presence of second covariant derivatives as well as Fµν . (If
only the replacement in (86) is used, one obtains an ex-
pression involving mµ with coefficient which are functions
of m1,m2,m3,m4. However, these functions are not finite
in the coincidence limit, i.e. when two or more of their
arguments become equal, and such an expression is not
truly well defined.)

4.4 Bosonic formulas

For completeness we give here the analogous formulas of
(37), (38) and (39), and (59), (60) and (61) for the bosonic
effective action:

Tr log(P 2 + U) =
∫
ddxddp

(2π)d
tr

[
log∆+

p2

d

(
1
∆2Uµ

)2

− 2p4

d(d+ 2)

{
−2
(
1
∆2Uµ

)4

+
(
1
∆2Uµ

1
∆2Uν

)2

+8
(
1
∆3Uµ

1
∆
Uµ

)2

+ 2
(
1
∆3Uµµ

)2

−8 1
∆3Uµ

1
∆
Uµ

1
∆3Uνν + 4

1
∆2Uµ

1
∆2Uν

1
∆2Fµν

+
(
1
∆2Fµν

)2
}
+ · · ·

]
, (90)

where ∆ = p2 + U , Uµ = [Pµ, U ], etc. From this formula,
the fermionic one is obtained by setting U = m2 +U (1) +
U (2).
After momentum integration, the renormalized

bosonic effective action becomes

Tr log(P 2 + U)

=
1

(4π)d/2Γ (d/2)

∫
ddxtr

[
(−1)d/2 2

d
Ud/2 log(U/µ2)
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+
1
d
H2,2

2,d/2U
2
µ +

4
d(d+ 2)

H2,2,2,2
4,d/2+1U

2
µU

2
ν − 2

d(d+ 2)

×H2,2,2,2
4,d/2+1(UµUν)2 − 16

d(d+ 2)
H3,1,3,1

4,d/2+1U
2
µU

2
ν

− 4
d(d+ 2)

H3,3
2,d/2+1U

2
µµ +

16
d(d+ 2)

H3,1,3
3,d/2+1U

2
µUνν

− 8
d(d+ 2)

H2,2,2
3,d/2+1UµUνFµν

− 2
d(d+ 2)

H2,2
2,d/2+1F

2
µν + · · ·

]
. (91)

In this case, the arguments z2
1 , . . . , z

2
n in Hr1,...,rn

n,k have to
be substituted for by U1, . . . , Un.
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